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Variational approach to the Zakharov-Shabat scattering problem
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It is shown that the Zakharov-Shabat scattering problem associated with the inverse scatiering trans-
form technique for solving the nonlinear Schrodinger equation can be reformulated as a variational
problem. This reformulation makes it possible to use direct variational methods for finding the eigenval-
ues of the scattering problem, which determines the speed and amplitude of the solitons emerging from a
given initial condition. The approach is illustrated by an application to sech-shaped initial conditions.

PACS number(s): 03.40.Kf, 42.81.Dp

The nonlinear Schrodinger (NLS) equation, describing
the dynamical evolution of a slowly varying wave en-
velope under the influence of linear dispersion or
diffraction and nonlinear self-phase modulation, can be
taken in the form [1-3]
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u(0,x)=q(x) .

— +lul’u
(1)

The NLS equation is a universal equation with applica-
tions in many different areas of physics; e.g., in plasma
physics, astrophysics, and nonlinear optics. The non-
linear Scrhodinger equation belongs to the remarkable
class of nonlinear evolution equations, which can be
solved by essentially linear methods. The analytical tool
is the inverse scattering transform (IST), which can be
viewed as a generalization of the well-known Fourier
transform method used for linear problems [1-3]. A key
role in the solution scheme of the nonlinear Schrodinger
equation is played by the Zakharov-Shabat scattering
problem:
dv,
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where v, and v, are eigenfunctions corresponding to the
J
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eigenvalue ¢, and g (x) is the initial wave form, cf. Eq. (1),
which plays the role of the scattering potential. The
scattering data consist of the discrete eigenvalues ¢,, and
the coefficients a (§) and b(&), which are the amplitudes
of v; and v, as x — =, viz.,

v,—a(§lexp(—iéx), v,—b(&)exp(ifx)

(3)

The scattering data are the analogs of the Fourier trans-
form of g(x) for the linear case. The time evolution of
the scattering data can easily be determined. The solu-
tion to the inverse problem, viz., that of finding the po-
tential that gives rise to the time evolved scattering data,
also gives the solution of the NLS equation. The ampli-
tude (speed) of the emerging solitons is given by the imag-
inary (real) part of the discrete eigenvalues §,, which are
constants of motion and hence do not change with time.
For convenience, we recapitulate the classical results

x—+ o .

" obtained for a sech-shaped potential with amplitude A4,

i.e.,

q(x)= A sech(x) . 4)
Satsuma and Yajima solved this problem [2] and found
after some ‘“tedious but straightforward” calculations
that the eigenfunctions corresponding to Egs. (2) and (4)
could be written as

A [exp(x)+exg x)] 1 o1 .3 . 1
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where F is the hypergeometric function and the
coefficients a (£) and b (&) are given by
. rA(—if+1)
a(f)= ,
5 [(—ig+i+1ADT(—it+1—1[4])

— A *
l4]
where I is the gamma function. Without loss of generali-
ty, we can take the amplitude A4 to be real. The discrete
eigenfunctions must vanish as |x|— . It is therefore

clear from Egs. (2) and (3) that the discrete eigenvalues
are determined from the conditions

a(£)=0 and Im(£)>0 . )]

(6)

b(g)= sech(m{)sin(7| 4]) ,

Equations (6) and (7) give rise to a very simple expression
for the discrete eigenvalues,

¢, =ilA—%—n), n=0,1,2,...,N, (8)

where N is a non-negative integer such that
A—3<N=<A—]. The first eigenvalue appears as

=3, a second one at 4=, and so on. The corre-
sponding discrete eigenfunctions can, after some manipu-
lations of Eq. (5), be written as

vy=exp[(4—L—n)x]

XF|—A,A4, A ——n,——l———— ,
1+exp(—2x)
9
v,=—(—1)"exp[—(A4 —3—n)x]

1

XF|—A,A,A—n,——7F7—7—
1+exp(2x)

Equation (9) is a compact form used to write all discrete
eigenfunctions, but it is not very explicit, as it involves
the hypergeometric function. However, we can use the
relation, cf. [8],

F(—A,A,4 —n,z)

_d-n) —4-n-nd”
r'(4) dz"

to obtain explicit formulas. For instance, the first two
eigenfunctions are given by (cf. Fig. 1)

v, =e—xp-(;)—c—/£lsech“(x) n =0

[z4 " H1—2)4], (10

2A b )
(1
Ul:exg(;‘x/ﬂ exp( —x)
_ 4 -
Ab_lexp(x) sech®(x), n=1.

Thus, in the case of a sech-shaped potential, an exact, al-
beit complicated, solution can be found. However, in
general, exact solutions of the Zakharov-Shabat problem
cannot be given and the eigenvalue equation has to be
solved numerically. The purpose of the present paper is
to draw attention to the possibility of using approximate
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FIG. 1. The first two discrete eigenfunctions of the
Zakharov-Shabat scattering problem for the potential
g(x)= A sech(x). The solid line represents v, while the dashed
line gives v;.

variational methods for obtaining discrete eigenvalues.
In a variational approach, the scattering equations, Eq.
(2), are rewritten as the variational problem,

8§ Ldx=0, (12)
where the Lagrangian is given by

1 dv, dv, . 1
L= oy = —v - +1§v1v2—3(q‘v%+qv%).

(13)

Approximate solutions for the eigenvalue and the eigen-
functions of the Zakharov-Shabat problem can be ob-
tained from Egs. (12) and (13) using direct variational
methods. This approach is based on approximating the
eigenfunctions by suitably chosen trial functions involv-
ing one or several parameters. The trial functions are in-
serted into the Lagrangian, Eq. (13), and the variational
integral is evaluated. The subsequent variation, with
respect to the parameters, yields an approximate solu-
tion.

In order to illustrate the approach, we consider the
classical case of u (0,x)=g (x)= 4 sech(x), for which the
known exact results were summarized above. In this
case, it is natural to use the well-known explicit eigen-
function for 4 =1 as a trial function when trying to find
the lowest order eigenvalue. Thus, making use also of the
symmetry relation v,(x)= —v T (—x), we choose

v, =B exp(—x /2)sech(x) ,
(14)
v,= —B exp(x /2)sech(x) .

The subsequent analysis is very simple; the integrated La-
grangian becomes

(L)=[7 Ldx=—2Big—1+4], (15)
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and the requirement that the reduced Lagrangian be sta-
tionary, with respect to variations in the amplitude B,
yields —i{= A4 —1, the exact eigenvalue for all ampli-
tudes. On the other hand, the eigenfunctions are only
correct for 4 =1. However, this can easily be improved
if we use a better trial function. The solution to Eq. (2)
can formally be written as

vl(x)=exp(—igx)fxq(x’)vz(x')exp(igx’)dx' . (16)

It is clear from an asymptotic expansion of the integral
that v, is proportional to exp(—[1—i{]x), as x — «, and
exp(—ix), as x — . An alternative choice of test func-
tion is therefore

vy =B exp(—x/2)sech[(—if+1)x],
an
v, = —B exp(x /2)sech[(—i{+])x] .

The integrated Lagrangian is (L )=—2B%(i{—1+ 4)/
(—i&+1), which does not only give us the correct eigen-
value but also gives eigenfunctions that are asymptotical-
ly correct; compare Eq. (11).

An important initial condition to consider is (cf. [4-7])

q(x)= A sech(x)exp(iBx?) , (18)

corresponding to chirped pulses in nonlinear fiber optics.
The presence of a frequency chirp degenerates the soliton
content of the initial pulse in the sense that the asymptot-
ically emerging soliton has lower amplitude, is temporally
wider than in the chirp free case, and only contains a
fraction of the initial pulse energy. For strong enough
frequency chirp, the soliton character is lost completely,
and the asymptotic result is a linearly dispersing pulse.
The soliton content of chirped pulses has been analyzed
previously by numerical [4,5] as well as approximate
analytical methods [6,7]. The main new feature that we
have to incorporate in our trial function in order to treat
the chirped case is the fast oscillations on the rapidly de-
caying side of the eigenfunction. From asymptotic ex-
pansion of Eq. (16), it is found that the phase asymptoti-
cally grows as Bx? as x — o0, and that it approaches zero
as x — — . Assuming that the change in absolute value
is of minor importance, we choose the test function,

v, =B exp(—x /2)sech(x)exp[iB(x —x,)*8(x —x,)] ,
a

vy(x)=—vf(—x),

where 0 is the Heaviside step function. As we do not a
priori know the point x,, where the phase starts to grow,
it would seem natural to make a variation with respect to
xq and let the variational equations determine x,. Unfor-
tunately, this turns out to be too cumbersome to carry
out analytically. However, if we choose x,=0 for simpli-
city, it is straightforward to integrate the Lagrangian,

(L)=-2B%|(if—1+ A)fowsechz(x)cos(sz)dx

—B f omx sech’(x)sin(Bx2)dx | . (20)
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If we again require the reduced Lagrangian to be station-
ary with respect to variation in the amplitude B, we ob-
tain the eigenvalue

1 B f owx sech?(x)sin(Bx 2)dx
=ji|A——— = . (21)
6= 2 f . sech?(x)cos(Bx2)dx

A comparison with the numerical solution of the
Zakharov-Shabat scattering problem shows that Eq. (21)
is a good approximation when the chirp parameter B is
small, but starts to deteriorate as B increases, cf. Fig. 2.
The reason for the deteriorating agreement is that we
have not made an optimal choice of the parameter x,. A
qualified guess would be that the oscillating part of the
pulse penetrates into the nonoscillatory side to some-
where in the vicinity of the extremum of the eigenfunc-
tion, cf. Fig. 1. Taking x, as the point where v, has its
extremum, i.e., x,=arctanh( —%)z —0.55, the agree-
ment with the exact solution improves considerably, cf.
Fig. 2. Moreover, we can make the variational solution
almost coincide with the numerical solution if we choose
xo=~ —0.39, cf. Fig. 2.

In conclusion, we have shown that the Zakharov-
Shabat eigenvalue problem, which forms an important
part of the inverse scattering technique for the solution of
the nonlinear Schrodinger equation, can be reformulated
as a variational problem. This approach makes possible
the application of direct variational methods to obtain
approximations for the concomitant eigenvalues, which
determine the speed and amplitude of the solitons con-
tained in a given initial pulse form. The analysis has been
illustrated by an application of the case of sech-shaped
initial pulses. For the case of transform limited initial
sech pluses, the variational approximation gives the exact
eigenvalues by means of some very simple calculations.
For chirped initial sech pulses, an exact explicit solution
of the eigenvalue problem does not exist, but the varia-
tional approach is shown to give approximate eigenvalues
in good agreement with numerical calculations. These
applications illustrate the strength as well as the weak-
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FIG. 2. The largest eigenvalue as a function of the chirp pa-
rameter B for the potential g (x)=sech(x)exp(iBx?). The curves
correspond to variational solutions for different values of x,,
while the dots represent a numerical solution. x,=0 ( ),
xXo=—0.55(— — —),and xg=—0.39 (—- —-—- ).
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ness of a direct variational analysis based on trial func-
tions and subsequent Ritz optimization. A good choice
of trial function always requires physical insight into the
considered problem; e.g., access to an exact solution for a
special case and/or information from asymptotic con-
siderations. At the same time, the form of the trial func-
tion must be chosen simple enough so that the subsequent
calculations and optimization become reasonably simple
to perform. In the case of the chirped sech-shaped
pulses, a suitable form of the trial function could easily be
found, but a formal optimization could not be made
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analytically, and simplifications and numerical calcula-
tions had to be done to obtain approximations for the ei-
genvalues. Nevertheless, the variational approach offers
a convenient and useful scheme for finding approximate
eigenvalues in many situations where exact solutions be-
come very complicated, or where only numerical solu-
tions are available.

We are grateful to M. L. Quiroga-Teixeiro for stimulat-
ing discussions and help with numerical calculations of
the eigenvalues of the Zakahrov-Shabat problem.
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